196 research outputs found

    A hierarchical MPC scheme for interconnected systems

    Full text link
    This paper describes a hierarchical control scheme for interconnected systems. The higher layer of the control structure is designed with robust Model Predictive Control (MPC) based on a reduced order dynamic model of the overall system and is aimed at optimizing long-term performance, while at the lower layer local regulators acting at a higher frequency are designed for the full order models of the subsystems to refine the control action. A simulation experiment concerning the control of the temperature inside a building is reported to witness the potentialities of the proposed approach

    Plug-and-Play Model Predictive Control based on robust control invariant sets

    Get PDF
    In this paper we consider a linear system represented by a coupling graph between subsystems and propose a distributed control scheme capable to guarantee asymptotic stability and satisfaction of constraints on system inputs and states. Most importantly, as in Riverso et al., 2012 our design procedure enables plug-and-play (PnP) operations, meaning that (i) the addition or removal of subsystems triggers the design of local controllers associated to successors to the subsystem only and (ii) the synthesis of a local controller for a subsystem requires information only from predecessors of the subsystem and it can be performed using only local computational resources. Our method hinges on local tube MPC controllers based on robust control invariant sets and it advances the PnP design procedure proposed in Riverso et al., 2012 in several directions. Quite notably, using recent results in the computation of robust control invariant sets, we show how critical steps in the design of a local controller can be solved through linear programming. Finally, an application of the proposed control design procedure to frequency control in power networks is presented

    Plug-and-Play Decentralized Model Predictive Control

    Full text link
    In this paper we consider a linear system structured into physically coupled subsystems and propose a decentralized control scheme capable to guarantee asymptotic stability and satisfaction of constraints on system inputs and states. The design procedure is totally decentralized, since the synthesis of a local controller uses only information on a subsystem and its neighbors, i.e. subsystems coupled to it. We first derive tests for checking if a subsystem can be plugged into (or unplugged from) an existing plant without spoiling overall stability and constraint satisfaction. When this is possible, we show how to automatize the design of local controllers so that it can be carried out in parallel by smart actuators equipped with computational resources and capable to exchange information with neighboring subsystems. In particular, local controllers exploit tube-based Model Predictive Control (MPC) in order to guarantee robustness with respect to physical coupling among subsystems. Finally, an application of the proposed control design procedure to frequency control in power networks is presented.Comment: arXiv admin note: text overlap with arXiv:1210.692

    Learning-based predictive control for linear systems: a unitary approach

    Full text link
    A comprehensive approach addressing identification and control for learningbased Model Predictive Control (MPC) for linear systems is presented. The design technique yields a data-driven MPC law, based on a dataset collected from the working plant. The method is indirect, i.e. it relies on a model learning phase and a model-based control design one, devised in an integrated manner. In the model learning phase, a twofold outcome is achieved: first, different optimal p-steps ahead prediction models are obtained, to be used in the MPC cost function; secondly, a perturbed state-space model is derived, to be used for robust constraint satisfaction. Resorting to Set Membership techniques, a characterization of the bounded model uncertainties is obtained, which is a key feature for a successful application of the robust control algorithm. In the control design phase, a robust MPC law is proposed, able to track piece-wise constant reference signals, with guaranteed recursive feasibility and convergence properties. The controller embeds multistep predictors in the cost function, it ensures robust constraints satisfaction thanks to the learnt uncertainty model, and it can deal with possibly unfeasible reference values. The proposed approach is finally tested in a numerical example

    LSTM Neural Networks: Input to State Stability and Probabilistic Safety Verification

    Get PDF
    The goal of this paper is to analyze Long Short Term Memory (LSTM) neural networks from a dynamical system perspective. The classical recursive equations describing the evolution of LSTM can be recast in state space form, resulting in a time-invariant nonlinear dynamical system. A sufficient condition guaranteeing the Input-to-State (ISS) stability property of this class of systems is provided. The ISS property entails the boundedness of the output reachable set of the LSTM. In light of this result, a novel approach for the safety verification of the network, based on the Scenario Approach, is devised. The proposed method is eventually tested on a pH neutralization process.Comment: Accepted for Learning for dynamics & control (L4DC) 202

    Plug-and-play distributed state estimation for linear systems

    Get PDF
    This paper proposes a state estimator for large-scale linear systems described by the interaction of state-coupled subsystems affected by bounded disturbances. We equip each subsystem with a Local State Estimator (LSE) for the reconstruction of the subsystem states using pieces of information from parent subsystems only. Moreover we provide conditions guaranteeing that the estimation errors are confined into prescribed polyhedral sets and converge to zero in absence of disturbances. Quite remarkably, the design of an LSE is recast into an optimization problem that requires data from the corresponding subsystem and its parents only. This allows one to synthesize LSEs in a Plug-and-Play (PnP) fashion, i.e. when a subsystem gets added, the update of the whole estimator requires at most the design of an LSE for the subsystem and its parents. Theoretical results are backed up by numerical experiments on a mechanical system
    • …
    corecore